SELECTION OF SUITABLE RECORDS FOR NONLINEAR ANALYSIS USING GENETIC ALGORITHM (GA) AND PARTICLE SWARM OPTIMIZATION (PSO)

Authors

  • B. Mohebi
  • Gh. Ghodrati Amiri
  • M. Taheri
Abstract:

This paper presents a suitable and quick way to choose earthquake records in non-linear dynamic analysis using optimization methods. In addition, these earthquake records are scaled. Therefore, structural responses of three different soil-frame models were examined, the change in maximum displacement of roof was analyzed and the damage index of whole structures was measured. The soil classification of project location was divided into 4 different types according to the velocity of shear waves in the Iranian Code for Seismic Design. As a result, 8 frame models were considered. The selection and scaling were carried out in 2 stages. In the first stage, the matching with design spectrum was carried out using genetic algorithm in order to achieve the mean of structural response. In the second stage, the matching with average of structural responses were carried out using PSO to achieve 1 or 3 accelerograms with related factors in order to be used in structural analysis.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

A Particle Swarm Optimization Algorithm for Mixed-Variable Nonlinear Problems

Many engineering design problems involve a combination of both continuous anddiscrete variables. However, the number of studies scarcely exceeds a few on mixed-variableproblems. In this research Particle Swarm Optimization (PSO) algorithm is employed to solve mixedvariablenonlinear problems. PSO is an efficient method of dealing with nonlinear and non-convexoptimization problems. In this paper,...

full text

Gene selection using hybrid particle swarm optimization and genetic algorithm

Selecting high discriminative genes from gene expression data has become an important research. Not only can this improve the performance of cancer classification, but it can also cut down the cost of medical diagnoses when a large number of noisy, redundant genes are filtered. In this paper, a hybrid Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) method is used for gene selection...

full text

Comparative Study of Particle Swarm Optimization and Genetic Algorithm Applied for Noisy Non-Linear Optimization Problems

Optimization of noisy non-linear problems plays a key role in engineering and design problems. These optimization problems can't be solved effectively by using conventional optimization methods. However, metaheuristic algorithms such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) seem very efficient to approach in these problems and became very popular. The efficiency of these ...

full text

Validating an improved model for Feeder Bus network design using Genetic Algorithm (GA) and Particle swarm optimization (PSO)

There is an increasing population rate especially in metropolitan areas and the majority of people living in such areas have to spend some part of their time commuting to their destinations. So, one of the serious concerns for network design is defining an efficient and appropriate network being able to shift passenger’s mode from private to public transportation properly. The public transport ...

full text

Using a combination of genetic algorithm and particle swarm optimization algorithm for GEMTIP modeling of spectral-induced polarization data

The generalized effective-medium theory of induced polarization (GEMTIP) is a newly developed relaxation model that incorporates the petro-physical and structural characteristics of polarizable rocks in the grain/porous scale to model their complex resistivity/conductivity spectra. The inversion of the GEMTIP relaxation model parameter from spectral-induced polarization data is a challenging is...

full text

Semantic Web Service Selection Using Particle Swarm Optimization (Pso)

Service selection is a major constraint to discover and deliver services in a user friendly manner. In our system, we are enhancing and evaluating reliability of service discovery by adapting Particle Swarm Optimization (PSO) Algorithm in ontology repository to discover selected services. Our proposed technique is useful for ordinary search as well as semantic search corresponding to the servic...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 4  issue 4

pages  509- 524

publication date 2014-11

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023